Group - A

(Multiple Choice Type Questions)

- 1. Choose the correct alternatives for any ten of the following:
- The differential coefficient of x^6 with respect to χ^3 is
 - \checkmark a) $2x^3$
- b) 2x

- The degree and order of the differential equation $\left(\frac{d^2y}{dx^2}\right)^{\frac{2}{3}} 3\frac{dy}{dx} = 4$ are
 - a) degree $=\frac{2}{3}$, order =2

b) degree = 2, order = 2

c) degree = 2, order = 1

 \checkmark d) degree = 3, order = 2

- The series 1-1+1-1+... is
 - a) convergent with sum 0
 - c) divergent

- b) convergent with sum 1
- √d) oscillatory
- iv) Let T be a linear transformation from R^2 to R^3 defined by T(x, y) = (x+2y, x-y, y). Then the image of (1,2) is

 - a) (2,1,-1) **4** b) (5,-1,2)THE THE THE PART AND THE SAID
- c) (1, 1,1)
- v) In \mathbb{R}^3 , the vectors (1, 0, 1), (1, 1, 0) and (0, 1, 1) are
 - √a) linearly dependent

b) linearly independent

c) both (A) and (B)

- d) none of these
- vi) If (5,7) = a(1, 1) + b(1, 2) the values of a and b are respectively
 - a) 1, 2
- b) 2, 3

stable of the miles

F			
vii)	The series	$\sum_{n=1}^{\infty} \frac{1}{n^p}$	is convergent if
	a) <i>p</i> ≥1		b) $p = 1$

Answer: p > 1

viii)
$$\frac{1}{(D-2)(D-3)}e^{x}$$
 is

 \checkmark a) $\frac{e^x}{2}$

b) $\frac{xe^{2x}}{2}$ c) $-\frac{xe^x}{6}$ d) $-\chi e^{3x}$

ix) If for a sequence $\{u_n\}, \lim_{n\to\infty} u_n = 0$ them

a) $\{u_n\}$ is convergent to 1

b) $\{u_n\}$ is divergent

 \checkmark c) $\{u_n\}$ is convergent to 0

d) none of these

X) If S and T be two subspaces of a vector space V, then which of the following is also a subspace of V?

a) $S \cup T$

b) S-T

Integrating factor of $ydx - xdy = y^2 \cos y \, dy$ is

a) $\frac{1}{v^2}$

 \checkmark c) $\frac{1}{v}$

xii) Leibnitz's test is applied to

a) a constant series

√ c) an alternating series

b) a series of positive terms

w 2) to spen with most (E.g. - y 2 - x) - (- x)

d) a series of negative terms

xiii) Let T be a linear transformation from R^2 to R^3 defined by T(x,y)=(x+y,0,0). Then rank of T is OF HUMAN ALLE MENERS

a) 3

√c) 1

(d) 0 1 Mag 15

GROUP B TO SEASON ON I (S. 1) d + (1. 1) b = (7.8) d . (v. (Short Answer Type Questions)

2. Solve any two of the following:

a) $y = px + \frac{a}{n}$ b) $(D^2 - 4)y = e^{2x} + e^{-4x}$ c) $(D^2 + 9)y = \cos 3x$

See Topic: DIFFERENTIAL QUATIONS, Long Answer Type Question No. 2(ii), (iv) & (v).

B MII-126

3. Test the convergence of the series

$$x + \frac{2^2 x^2}{2!} + \frac{3^3 x^3}{3!} + \frac{4^4 x^4}{4!} + \dots X > 0.$$

See Topic: SERIES, Short Answer Type Question No. 6.

4. Let $S = \{(x, y, z) | x + y + z = 0, x, y, z \in \mathbb{R}^3\}$. Prove that S is a subspace of \mathbb{R}^3 . Find the dimension of S.

See Topic: LINEAR ALGEBRA, Long Answer Type Question No. 16.

5. Find the representative matrix of the linear transformation T:

$$R^3 \longrightarrow R^3$$
 defined by

$$T(x, y, z) = (3x + z, -2x + y, -x + 2y + 4z)$$

See Topic: LINEAR ALGEBRA, Short Answer Type Question No. 19.

6. Define monotone sequence. When is a monotone sequence convergent? Is the following sequence $\{u_n\}$ convergent? 1908

$$u_n = \frac{3n+1}{n+2}$$

See Topic: SEQUENCE, Short Answer Type Question No. 2.

GROUP-C

(Long Answer Type Questions)

- 7. a) Verify whether the differential equation $e^{y}dx + (xe^{y} + 2y)dy = 0$ is exact.
- b) Solve : $x \frac{dy}{dx} 2y = xy^4$
- c) Find the general and singular solutions of $y = px p^2$
- a) & b) See Topic: DIFFERENTIAL EQUATIONS, Long Answer Type Question No. 9(b) & (c).
- c) See Topic: DIFFERENTIAL EQUATIONS, Short Answer Type Question No. 6.
- 8. a) Discuss the convergency of the sequence $\left\{\frac{1}{n}\sin\frac{n\pi}{2}\right\}$
- b) Let $S = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} | a+b=0, a, b, c, d \in R \right\}$. Find a basis and dimension of S.
- c) Show that $1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots$ is a divergent series

POPULAR PUBLICATIONS

- a) See Topic: SEQUENCE, Short Answer Type Question No. 1(c).
- b) See Topic: LINEAR ALGEBRA, Long Answer Type Question No. 2.
- c) See Topic: SERIES, Short Answer Type Question No. 14.

9. a) Solve:
$$x^2 \frac{d^2 y}{dx^2} - 3x \frac{dy}{dx} - 5y = \sin \log x$$

- b) If $\{\alpha, \beta, \gamma\}$ is basis of a real vector space V, show that $\{\alpha + \beta, \beta + \gamma, \gamma + \alpha\}$ is also a basis of ٧.
- v. c) Determine the linear mapping $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ which maps the basis vectors (0, 1, 1), (1, 0, 1),
- (1, 1, 0) of R^3 to the vectors (1, 2, 1), (1, 1, 2), (2, 1, 1) respectively, find dim (ker T).
- a) See Topic: DIFFERENTIAL EQUATIONS, Short Answer Type Question No. 4.
- b) See Topic: LINEAR ALGEBRA, Long Answer Type Question No. 7(b).
- c) See Topic: LINEAR ALGEBRA, Short Answer Type Question No. 4.
- 10. a) State D' Alembert's ratio test. Test the convergence of the series $\sum_{n=1}^{\infty} \frac{2^n n!}{n^n}$
- b) Show that the series $1 \frac{1}{2} + \frac{1}{3} \frac{1}{4} + \dots$ converges conditionally
- c) Show that the sequence $\sqrt{2}$, $\sqrt{2+\sqrt{2}}\sqrt{2+\sqrt{2}+\sqrt{2}}$ converges to 2.
- a) See Topic: SERIES, Long Answer Type Question No. 2(i) & Short Answer Type Question No. 1.
- b) See Topic: SERIES, Short Answer Type Question No. 2.
- c) See Topic: SEQUENCE, Long Answer Type Question No. 5.
- 11. a) Find the differential equation of all circles touching the axis of x at the origin.
- b) Show that the vectors (1,-2,3), (2,3,1) and (-1,3,2) form a basis of \mathbb{R}^3
- c) Give an example to show that union of two sub spaces need not be a sub space of v.
- a) See Topic: DIFFERENTIAL EQUATIONS, Long Answer Type Question No. 17.
- b) See Topic: LINEAR ALGEBRA, Long Answer Type Question No. 6(b).
- c) See Topic: LINEAR ALGEBRA, Long Answer Type Question No. 4(b).